6 月 26 日消息,谷歌旗下 DeepMind 表示,该公司已经开发出一种名为 RoboCat 的人工智能模型,可以控制不同的机器人手臂执行一系列任务。仅仅这一点并不特别新颖,但 DeepMind 声称,该模型是第一个能够解决和适应多种任务的模型,并且使用不同的、真实世界的机器人来完成。
RoboCat 的灵感来自于 DeepMind 的另一个 AI 模型 Gato,后者可以分析和处理文本、图像和事件。RoboCat 的训练数据包括模拟和真实机器人的图像和动作数据,这些数据来自于虚拟环境中的其他机器人控制模型、人类控制的机器人以及 RoboCat 自身的前期版本。
DeepMind 的研究科学家李亚历克斯(Alex Lee)是 RoboCat 团队的合作者之一,他在接受 TechCrunch 邮件采访时说:“我们证明了一个单一的大型模型可以在多个真实的机器人实体上解决多样化的任务,并且可以快速地适应新的任务和实体。”
IT之家注意到,为了训练 RoboCat,DeepMind 的研究人员首先使用人类控制的机械臂,在模拟或真实环境中收集了每个任务或机器人的 100 到 1000 次演示。例如,让机械臂拾取齿轮或堆叠积木等。然后,他们对 RoboCat 进行微调,在每个任务上创建一个专门的“衍生”模型,让它平均练习 10000 次。通过利用衍生模型生成的数据和演示数据,研究人员不断扩大 RoboCat 的训练数据集,并训练出新版本的 RoboCat。
最终版本的 RoboCat 在模拟和真实世界中,在总共 253 个任务上进行了训练,并在这些任务的 141 个变体上进行了测试。DeepMind 声称,在观察了几个小时内收集的 1000 次人类控制的演示后,RoboCat 学会了操作不同类型的机械臂。虽然 RoboCat 已经在四种有两爪臂的机器人上进行了训练,但该模型能够适应一种更复杂的有三指夹具和两倍可控输入的机械臂。
尽管如此,RoboCat 在 DeepMind 的测试中,在不同任务上的成功率也有很大差异,从最低的 13% 到最高的 99% 不等。这是在训练数据中有 1000 次演示的情况下;如果演示次数减半,成功率也会相应降低。不过,在某些情况下,DeepMind 声称 RoboCat 只需要观察 100 次演示就能学习新任务。
李亚历克斯认为,RoboCat 可能会降低解决新任务的难度。“只要给出一定数量的新任务演示,RoboCat 就可以微调到新任务,并且可以自我生成更多数据来进一步提高。”他补充说。
未来,研究团队的目标是减少教授 RoboCat 完成新任务所需的演示次数,使其少于 10 次。
- 谷歌旗下DeepMind开发出RoboCat AI模型 可以控制不同的机器人手臂执行一系列任务
- 老师荐书|那些深藏在书中的父爱与母爱,值得假期反复阅读!
- 梅雨季标配的高湿闷热上线
- LinkedIn推出生成式AI应用到了更大范围 允许用户直接使用该技术发表帖文_焦点报道
- 实数包含了所有数吗?实数和自然数有什么区别? 天天微头条
- realtek高清晰音频管理器怎么关闭 realtek怎么设置耳机?
- 环球快资讯:江苏省政府关于彭大刚等职务任免的通知
- 什么是地方债专项债券? 地方债专项债券与一般债券的区别是什么?|环球热议
- 国债回购利率多少?国债回购的交易规则 每日讯息
- 全球头条:城乡居民养老保险首次办理怎么办?城乡居民养老保险首次办理需要什么材料?
- 视讯!电影左耳结局是什么?张漾对李饵说了什么?
- 个税app怎么改申报单位?个人所得税纳税记录怎么打印? 环球热门
- 国债逆回购的利率是固定吗?国债逆回购节前利率高的原因
- 讯息:工伤保险和意外险一样吗?工伤保险和意外险哪个赔得多?
- 宽基指数基金值得买吗?宽基指数基金风险大不大 世界球精选
- 旺财存款是什么性质? 如何挑选银行理财?-全球聚焦
- 天天热点评!瞄准前沿技术 促进降本增效(经济聚焦)
- 长期不动存折会怎么样? 银行卡会被自动注销吗?
- 天天动态:国债回购利率多少?国债逆回购为什么亏损?
- suv合资车哪个牌子质量好?国产suv耗油排名 天天播报